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Abstract

We study the reflection of baroclinic Rossby waves from a non-zonal
barrier. In doing so we improve and extend an analytical study by Mysak
and Magaard (1983). We add lateral friction to their model and obtain
not only a more realistic Eulerian secondary flow, but we also calculate
the Stokes drift of the total Rossby wave field. We apply our improved
and extended model to the Hawaiian Ridge where the incident wave field is
known (Magaard, 1983).

Compared to the case of vanishing lateral friction the Eulerian mean flow
now shows smaller current speeds and wider current bands. The narrow
eastward jet in the immediate neighborhood of the Ridge is now replaced
by a much weaker, broader eastward flow. The subsequent western boundary
current and eastward countercurrent are now shifted farther away from the
Ridge in better agreement with White's (1983) analysis of historical
temperature data. The Lagrangian mean flow is stronger than the Eulerian
mean flow. Within the first 100 km off the Ridge the two flows are
mostly in opposite directions. -rt
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1. INTRODUCTION

In a recent paper Mysak and Magaard (1983), henceforth referred to as MM,
studied the reflection of baroclinic Rossby waves from a non-zonal
barrier. They have shown that the total field of incoming and reflected
waves leads to an Eulerian secondary flow, and they applied this theory
to the eastern portion of the Hawaiian Ridge area where the incoming
Rossby waves are known (Magaard, 1983). The theory predicts an Eulerian
mean flow along the Ridge that compares fairly well with a current
derived from historical temperature data by White (1983). MM and White
called this current the "North Hawaiian Ridge Current."

In their analytical theory MM use Rayleigh damping to reduce the

magnitude of the mean flow to realistic values, which necessitates a
value of R - 5 x 10-8s-1 for the damping coefficient, i.e. a
relaxation time of 200 days. This coefficient cancels out the very
low-frequency waves (0.1 to 0.25 cpy range) and still cripples the annual
and near-annual waves to such a degree that the whole concept of studying
the problem by means of linear reflection theory becomes questionable.
Moreover, restriction to Rayleigh damping excludes the possibility of
studying the reflection process under a nonslip condition at the barrier,
a shortcoming of the MM theory.

In this paper we introduce lateral friction to the study to allow a
treatment of the reflection process under a nonslip condition. This
introduction allows for smaller values of the Rayleigh damping
coefficient, and makes the application of linear wave reflection theory
more meaningful.

MM studied only the Eulerian mean flow associated with the incoming and
reflected waves. So far there are only Eulerian observations of White to
check theories against, and even these observations rest on a very thin
data base. In this paper we improve the theory of the Eulerian mean flow
generated by the waves, and thus achieve a better agreement between the
theory and the Eulerian observations. Moreover, we determine the
Lagrangian mean flow by studying the Stokes drift of the waves. A
comparison of the theoretically predicted Lagrangian flow with
observations must wait until Lagrangian data are available.

2. THE EULERIAN MEAN FLOW

The nondimensional potential vorticity equation with the inclusion of
Rayleigh damping and lateral friction reads

D [172 + (B-'iz)z + S3Y] - -R*V' + A*V2(V 2 p) , (2.1)

where X, Y and z are the coordinates in the eastward, northward and
upward directions; 4 is the geostrophic pressure; V = XX + YY;

DDt - t - YX + X Y and B, B* ,R* and A* are the nondimensional
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parameters:

B = ri 2 / Z2 = [N2 (z) H2 /f0 2 / k2 (Burger number)

fo 2 
Cot /Re Uo (planetary vorticity factor) (2.2)

R* (Q/Uo) R (nondimensional Raleigh damping parameter)

A*= (iUo)-' A (nondimensional lateral friction parameter).

In (2.2) the dimensional quantities have the following meanings:

r i  - inte'nal Rossby radius of deformation

N - Brunt-Viisili frequency

H - ocean depth

- horizontal length scale

fo = mean Coriolis parameter (2.3)

¢o - reference latitude

Uo  - horizontal velocity scale

Re - earth's radius

R - Rayleigh damping coefficient (of dimension time-1 )

A = lateral friction coefficient (of dimension length 2time-1 ).

Except for the additional lateral friction term (2.1) is the same as

(2.1) of KM.

We introduce a set of rotated coordinates x, y which are parallel and
perpendicular to the barrier:

x - X cos Y sina

y - X sinA + Y cos , (2.4)

where a is the angle between the barrier and the circles of latitude.

Under the transformation (2.4), (2.1) takes the form
D [V2, + (B - 1z ) + B*(-xsin o + ycosc)] = -R*V 2y + A*V2 (V2 ), (2.5)
Dt

where now lp = (xyz,t), V2 = 9XX + yy and D =t Wy~x+ 1y a
Dt YX X y

In addition to the boundary conditions

0 at y 0 (2.6)
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and

-- z = 0 at z = 0, -1 (2.7)

we add the nonslip condition

'. = 0 at y = 0. (2.8)

The nondimensional velocity components and perturbation density field, ,
can be computed from 4 via the relations

= =x ' w= B Dt z , - (2.9)

Finally, we note that to obtain dimensional quantities (denoted with a
superscript d), the following relations must be used:

[xd, yd, zd, td, ud, d, wd, pd, pd] (2.10)

= [Zx, Zy, Hz, (Z/Uo)t, Uou, Uov,(RoHUo/Z)w, PofoUoz2., (O~foUOjgH)j ,

where Ro - Uo/fo k is the Rossby number, o, is a constant
reference density, and the other quantities are defined in (2.3).

Like MM we seek solutions of (2.5) - (2.8) of the form

= + ,(2.11)

where

4(y,z,t) = lira-f dx
L-w _ (2.12)

represents a wave-induced mean field which yields the mean current 5 -
parallel to the barrier, and 4' represents a fluctuating field which v
consists of the superposition of the incident and reflected waves. Upon
substituting (2.11) into (2.5) we obtain

3t' + ( 1 ?)]+ $*sincx + R*_ - A*iT M H (2.13)t YY Z z Y yy yyyy yy Y

where M - ''= l , (2.14)y x

and H = 'x 'B-4'' " v'B-(- ') (2.15)



-4-

Performing the same operations on the boundary conditions (2.6) to (2.8), we
find

=0 at y = 0 (2.16)

+ - ( ) = 0 at z = 0, -1 (2.17)

0 at y = 0 (2.18)

We assume that the fluctuations under consideration satisfy a linearized
version of (2.5), which, in dimensional form, reads

+ (±2-- zt)z + (sincyP ' + coSOC ') = -RV2y' + Av2(7 2 2) (2.19)

with boundary conditions

0 at y = 0 (2.20)
z 0 at z = 0, -11 (2.21)

y' Y 0 at y = 0, (2.22)

Y' finite as y - co (2.23)

Equation (2.19) has four approximate solutions: the observed Incoming wave,

in= (z) e i(k2x + k~y - Lot) (2.24)

with real wave numbers kl, k2; the reflected wave,

qre (z) e i(k1x + t 2 y - wt) (2.25)

where 2. kl and £2 £2r + il2i

and Z , Zi are given as in MM (A9, AlO); and two solutions of

ptyy y-R ' + A (2.26)

' = i(m x - m2Y - WOt) (2.27)

where mI - kI and

m2 .-- A [R + (R2 + W2) ] -  + i [R + (R2 + U2) ] . (2.28)I,3

~ ~ -2A
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Considering (2.23), we find that our total wave field is the real part of

, Pl(z) (eik2Y + DLeiz2 Y + a 2eim2Y) ei(kix - t) (2.29)

where ci,a2 are complex constants to be determined by the boundary
conditions (2.20) and (2.22). For A 0 (as in MM) we would get i = -
and a2 = 0. In the general case (A # 0) we obtain

m2 -k 2  k2 - (3

2  U 2 (2.30)1 2 -m2 Z2 - m2

Substituting the real part of (2.29) into (2.14) and (2.15) yields

1 2 2 2 jY * 2
M = - - i(z) ki  k2 + aiO*r e- + 2 a* M2re- 2iy

2 2 1 12r 222

+ Be- £2 iy + Ce + D + i k + (2.31)

where

B = Pela(k 2 + Z2)] cos[(k, - Kr)Y] + Im[a,(k, + Z2)] sin[(k. - . )v] (2.32)

C = Re[ 2(k 2 + M2] cos[(k2 - m 2r)y + Im[a2 (k2 + m2 sin[(k2 - mzr) , (2.33)

D=Re [a a*' +a*aMn] Cos[( M )y11R 2 2 1 2 22r 2r

+ tI (-c a*Z + OL*a m ] sin [( - m )y] , (2.34)
1 2 2 1 2 2 2r 2r

and

H - 0. (2.35)

From (2.31) on, a superscript asterisk denotes the complex conjugate.

At this point we note that, if we had introduced an average with respect
to time instead of (2.12), we would have obtained exactly the same
expressions for M and H.

As M and H are independent of t we can find a steady solution s of
(2.13). The boundary current (Eulerian mean flow) 5 = - will then
have to satisfy the (dimensional) equation s Y

dA_ R dus - 3sinu - P2 (Z)
dy3  

- dy = ~ G(y) , (2.36)
0* fo

where

G(y) = ( ' (2.37)

and PI(Z) is the amplitude of the pressure fluctuation associated with
the incoming Rossby wave.

- ,-



-6-

As boundary conditions we choose

us  0 at y 0, (2.38)

us-* 0 as y 0, (2.39)
and

Z sdY = 0 (2.40)

Equation (2.40) implies that there is no flow around the ridge as x - .
MM also used the nonslip condition (2.38) although, based on the Rayleigh
damping, there was no physical reason for using this condition. M should
have used (2.40) instead. It is fortunate that, for the MM solution,
(2.38) and (2.40) are numerically equivalent.

The solution of (2.36) and (2.38) - (2.40) is

Us(Y,Z) = P1
2 (z)kl [K(0)(cosTy + +sinTy) + (c + "2 )sinTYfK(y) dy ] - K(y)2 2) T

2AP*fo T

(2.41)
where

2 Y Y Y )y"' Y' e( Y2)y" Y'K(y) = e i f e 2 e f e G(y') dy' dy" dy"' (2.42)

2(r + r) = 2(r -r 2 (r (+2r.-3
2 - + 2 2,T f 1r 2 1 2 '

Y Y - (r + r ) + 1- (r + r)
3 2 1 2 2

and [ sin + 2 sin2 R ) ]
r r2

r , r2 =- 3 i ____i _
2A 4 A2  27A 3

Generalization to the case of a random incident Rossby wave field, whose
potential energy spectrum is known, is done as in M and leads to

,2(z) 2 U .

=5 (Y'z) M f k i Epot() [K(0,v) (cosTy + Ts iny)A* f°r V1

+ (t+ z2) s K(y,v)dy] - K(y,v) dv , (2.43)
T 0

where kl, k2, 12, m2 are functions of the cyclic frequency v -c,/27i

K(y, ) is defined as in (2.42) where k1 and G are now functions of
also, Epot( v ) is the potential energy spectrum of the incoming
(observed) Rossby wave field, pi(z) is the normalized (as in MM) first

dp /dz
pressure mode, and r -, where describes the normalized (as n

MM) vertical distribution of the first-mode particle displacements.
Figure 1 shows the horizontal distribution of the surface Eulerian mean
flow iis(y,O), according to (2.43), for the case of the observed incoming

----.----------
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Fig. 1. The horizontal distribution of the surface Eulerian mean flow
along the north side of the Hawaiian Ridge.

full line observed (after White, 1983,extrapolating
his 100/400 db values to 0/1000 db
values on the basis of the depth
distribution shown in Fig. 3 of NM)

broken line A -0 R - 5 x 10-8-1 (from M)

circles A - 1 x 102m2-l; R - 1 x 10-8s-l

triangles A - 1 x 1022-1; R - 5 x 10-8s-1

crosses (+) A - 2 2 102m2s1; R -1 K 10-8-1

crosses (z) A - 2 2 102m2s1; R - 5 x 10-8s-1
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baroclinic Rossby wave field as described in MM. Except for R and A all
numerical values of the various parameters are as in MM. This figure
shows the current for four different combinations of R and A. For
comparison the result of MM (i.e. A - 0) and the observed current (White,
1983) are also given. The vertical distribution of the mean flow is as
in Figure 3 of MM.

3. THE LAGRANGIAN MEAN FLOW

According to Longuet-Higgins (1969) the x-component of the Stokes drift
associated with a single wave is

t+

5st [ u' dt' •u' , (3.1)

where u' is the wave-associated velocity vector, and the overbar denotes
a time-average over one or more wave cycles. For a wave field containing
waves of various periods we replace (3.1) by

t, + T t
Ust = lira T [ fuv'dt' ] • u' dt

T - to t, ( 3 .2 )

Using (3.1) we obtain for a single pair of incoming and reflected Rossby
waves (in nondimensional form)

Ust k ) Q(Y)(3
2, (3.3)

where
Q-2 -2iy

Q(y) = 2al Z e''iY + 2.z a* mie

+ B'e - 2iy + C'e - m2iy + D'e-(Zzi + m2i)Y , (3.4)

where

B' = Re [-a,(k2 - Z2 )
2] cos[(k 2 - Z2ryl

+ Im[-EI (k2  - 2)2] sin[(k 2  - 2r)Y] (3.5)

C' = Re[-,a,(k 2 - m 2)2] cos[(k 2 - m2r)y]

+ Im[-i 2 (k 2 - m2r)
2 ] sin[(k 2 - M2)Y] , (3.6)



-9-

and

D'= Re[2 (m) - m - ] cos[(k - m )y
1. 2 2 1 2 2r r

+ im[-2:lZ' ( :mX)* - Zm1 + .i* sin[(r - mr)y] (3.7)

The y-component, vat, of the Stokes drift van'Rhes.

For the case of a random wave field we obtain (in dimensional form)

Ust (y,z) = V) k (v) Q(y,:) dv (3.8)-f^r
2  

Epot
* f " r v

Figure 2 shows the horizontal distribution of the surface Stokes drift
Ust(y,O) according to (3.8), for the same numerical values as used for
the Eulerian mean flow, which is also displayed for comparison. In
addition, it shows the Lagrangian mean flow

UL = us + ust • (3.9)

4. DISCUSSION

Compared to the case of vanishing lateral friction (MM, Figure 4), in the
case of A #0 (Figure 1) the current speed is smaller and the width of the
current bands is larger. The narrow eastward jet in the immediate
neighborhood of the Ridge, as shown in MM (for A - 0), is replaced by a
much weaker, broader eastward flow. The subsequent western current,
which we would still call a western boundary current, reaches a strength
similar to that in Ni only if values for R are decreased. Because of the
broader eastward current directly along the Ridge, the western boundary
current and the subsequent eastward countercurrent are now shifted
farther away from the Ridge. This means a better agreement with White's
(1983) observation which is also indicated in Figure 1.

The significance of the comparison of our theoretical predictions with
White's observational results should not be overestimated. White's
results rest on a thin data base. In addition, even if theory and
observations were perfect, one should not expect perfect agreement
between them. The reflection of Rossby waves is not the only potential
driving mechanism of a mean flow along the Hawaiian Ridge; in addition,
there can be a wind-driven flow which is not included in our present
theory. What our theory does predict is a mean current system north of
the Hawaiian Ridge that is entirely driven by baroclinic Rossby waves and
that has a significant magnitude. Remarkably enough, this system shows a
resemblance with an observed current system. We conclude that the role
of the Rossby waves in the generation process of this current system is
significant.
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Fig. 2. The horizontal distribution of surface mean
flows along the north side of the Hawaiian
Ridge. The numerical values for the friction
parameters are A - 2 x 102m2s-1 and R =

1 x 10-8s - I.

rhombi Eulerian mean flow
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Table 1. Maximum values of current speed (in ma- 1 ) for the first three
bands of the Eulerian mean flow for various combinations of R and
A values.

R (10- 8s-1 ) A (102m2s-l) Eastward Westward Eastward
Coastal Boundary Counter
flow flow flow

1.0 0.5 0.647 1.139 0.822
1.0 1.0 0.374 0.663 0.408
1.0 2.0 0.184 0.338 0.167
1.0 5.0 0.057 0.117 0.044
1.0 10.0 0.019 0.050 0.015
2.5 0.5 0.465 0.854 0.587
2.5 1.0 0.266 0.503 0.308
2.5 2.0 0.131 0.256 0.135
2.5 5.0 0.040 0.092 0.039
2.5 10.0 0.013 0.041 0.015
5.0 0.5 0.287 0.538 0.354
5.0 1.0 0.163 0.323 0.200
5.0 2.0 0.080 0.170 0.097
5.0 5.0 0.024 0.063 0.032
5.0 10.0 0.008 0.029 0.014

Table 2. 3 - Rossby numbers F-) for reflected Rossby waves for
various R, A combinations.

R (10-8s-1) A (102m2s-1 ) e (at 6.7 - year peak) E (for
annual waves)

1 0.5 122 4 - 60
1 1.0 89 4 - 50
1 2.0 66 4 - 37
1 5.0 47 3 - 25
1 10.0 38 2 - 19
5 0.5 11 4 - 53
5 1.0 8 4 - 44
5 2.0 5 4- 32
5 5.0 3 3 - 21
5 10.0 3 2 - 16I ._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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The Lagrangian mean flow associated with the Rossby waves is mainly
dominated by the Stokes drift (Figure 2). Over the first 100 km off the
Ridge the Stokes drift more than offsets the Eulerian mean flow such that
the Eulerian and Lagrangian mean flows are mostly in opposite
directions, and the Lagrangian flow is stronger than the Eulerian.

The introduction of lateral friction allows meaningful mean flows even

when the Rayleigh damping coefficient is small (R - 1 x 10- 8 s-1 ).
Figure 1 shows the Eulerian mean flow for four combinations of R and A.
Maximum current speeds for a larger number of R, A combinations are found
in Table 1. R - 1 x 10-8s -1 means a relaxation time of 1000 days,
i.e. annual waves do not lose their wave nature through Rayleigh damping
as they did (more or less) in MM, where R - 5 x 10-8s -1 was chosen.

As another test of the wave nature of our "wave" solutions we have
2U k2 2

calculated the corresponding S-Rossby number C = , where k = -

and X is the wave length and U is the scale of the particle velocity.
For the incoming waves, c - 2 x 10-2 at the 6.7-year peak, and L-
values for the broad annual peak range from 0.1 to 1.4 and most values
are smaller than one. Clearly, these waves can propagate as free waves.
For the reflected waves, E- values are largest near the barrier. Table

2 shows their E- values at the 6.7-year peak and for the annual peak
for various R, A combinations. Naturally the influence of R on - is
stronger at the 6.7-year period than for the annual waves. At the
6.7-year period the reflected wave cannot propagate as a free wave
because it is damped too strongly either by Rayleigh damping or by
nonlinear effects. For the annual waves the influence of R is smaller.
For R - 1 x 10-8s-1, Rayleigh damping does not eliminate the
reflected annual wave's possibility of propagating as waves; £ - values
of 2 to about 50, however, make the applicability of linear theory to our
problem at least a controversial issue.

We have tried to include nonlinear effects, especially the action of the
mean flow on the reflected waves, in our analytical study; however, the
technical difficulties associated with such an attempt appeared
insurmountable. We are taking the point of view that we cannot go beyond
our present study by means of analytical tools. We are planning to
continue this work by means of numerical methods.
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